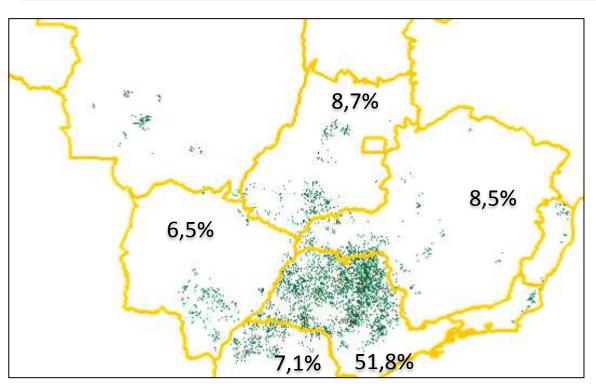
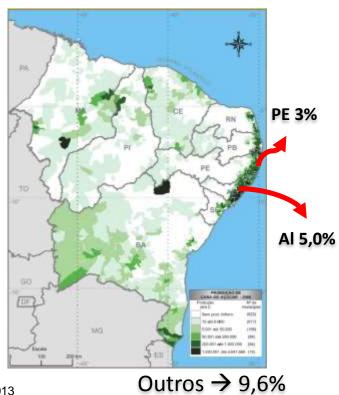


Nutrição mineral da cana-de-açúcar

VITTAGRO

Fabio Vale


Engº Agrº, Dr. Adubai Consultoria



Mercado Cana-de-Açúcar – Brasil

Colheita de 8.53 milhões de ha (+2.1%), com área plantada de 10.1 milhões de ha

CONAB, Abril de 2013

13,3% 1,14 milhões de ha

86,7% 7,39 milhões de ha

Produção de Cana-de-Açúcar

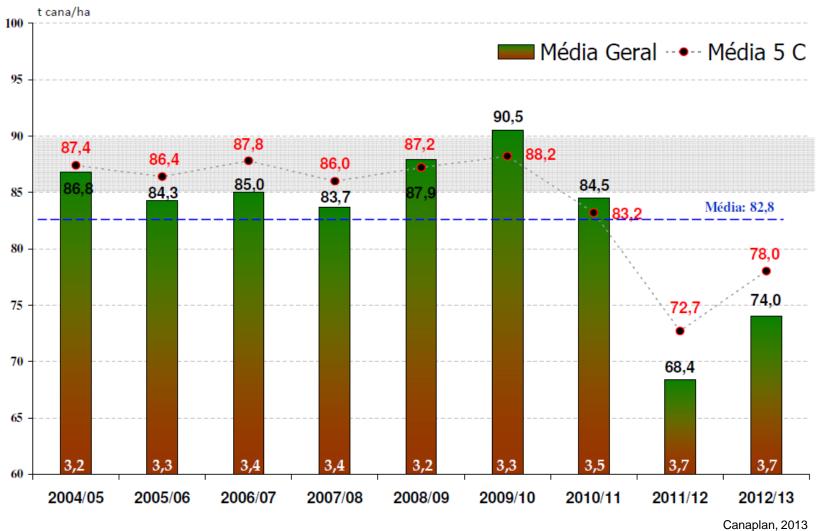
Estado		Usinas	Carnagadaraa	
	Moendo	Projetos	Total	Fornecedores
SP	192	14	206	36%
PR	32	6	38	20%
MG	49	12	61	25%
GO	43	19	62	15%
MS	24	10	34	10%
MT	13	3	16	10%
NE + TO	84	5	89	25%
Total	437	69	506	25%

Adaptado de Orplana, 2012

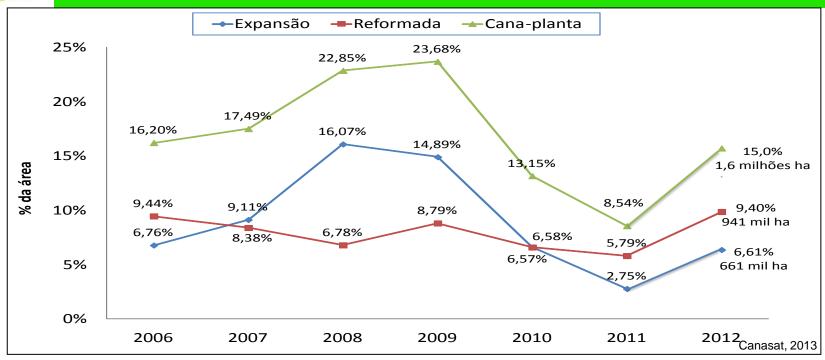
Usinas

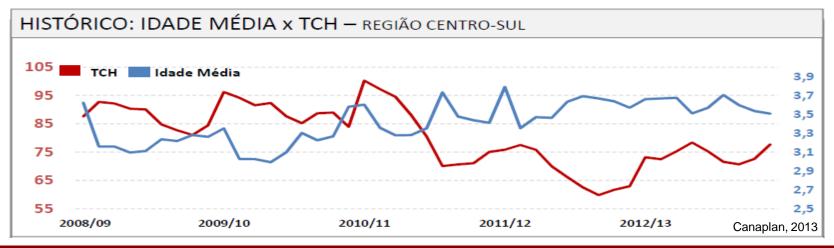
- Cana própria
- Vendas diretas (unidade ou grupo), ou em pools
- Estratégia → conhecer para gerar orçamento

Fornecedores

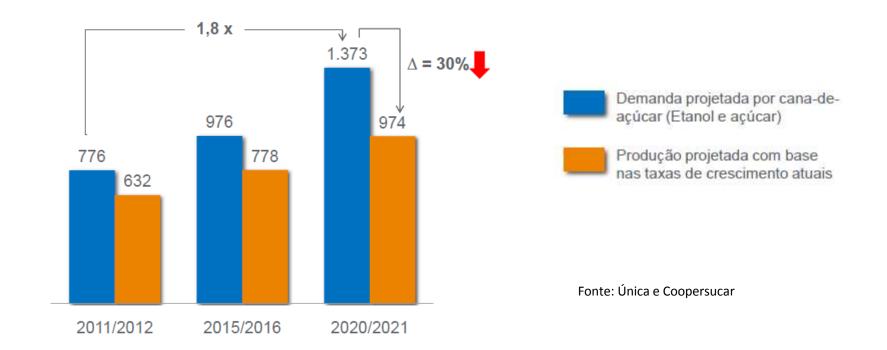

- Normalmente agrupados em associações
- Cooperativas, vendas diretas
- Estratégia → orçamento x produtividade

Produtividades


Médias Históricas - Centro-Sul

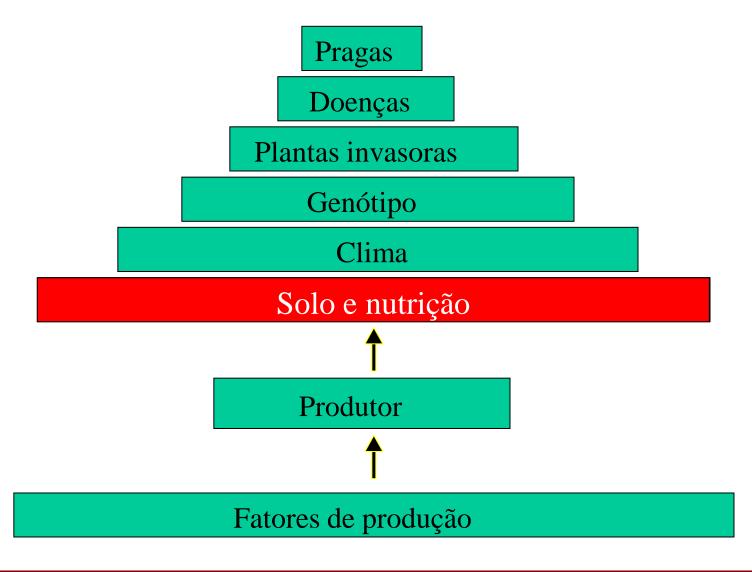


Renovação do Canavial



Vai faltar cana!!

Lacuna de cana-de-açúcar demandada X projetada (milhões de toneladas)


Para atender a demanda projetada e suprir esta lacuna, é necessário realizar investimentos

- Novas usinas (UNICA = 120)
- Novas áreas de plantio
- Maior produtividade

Fatores de Produtividade

Nutrientes

- Nutriente → faz parte de um composto ou quando participa de uma reação sem a qual a vida da planta é impossível.
- Arnon e Stout (1939) um elemento é considerado nutriente essencial quando atende aos três critérios seguintes:
 - A planta não é capaz de completar o seu ciclo de vida na ausência do elemento;
 - ✓ A função do elemento é específica, ou seja, nenhum outro elemento poderá substituí-lo naquela função.
 - Deve estar diretamente envolvido no metabolismo da planta (como constituinte de molécula, participar de uma reação, etc.);

Nutrientes

Macronutrientes

- \checkmark 1 $\frac{\text{ários}}{}$ \rightarrow N, P, K
- \checkmark 2\(\frac{\pm rios}{2}\) \rightarrow Ca, Mg, S
- ✓ Teor foliar em g/kg; Absorção em kg/ha

Micronutrientes

- ✓ B, Cl, Co, Cu, Fe, Mn, Mo, Ni, Zn
- ✓ Teor foliar em mg/kg; Absorção em g/ha
- ➢ Benéfico ou útil → não são essenciais, a planta pode viver sem eles, entretanto sua presença é capaz de contribuir para o crescimento, produção, ou para a resistência à pragas e moléstias.
 - Na (algodão, beterraba), Al (chá), Si (gramíneas)
- ➤ Tóxico → AI, metais pesados

Micronutrientes

Nutriente	Função	Composto	
В	Formação de zonas meristemáticas (gema apical e radicelas) Transporte de carboidratos, síntese do açúcar Resistência a doenças e deficiência hídrica Algumas variedades são mais susceptíveis à deficiência, como a RB86 7515, CTC 9 e CTC 20	Íon borato. Não se conhece compostos orgânicos	
CI	Fotossíntese	Cloreto, alcalóides	
Cu	Influência na permeabilidade dos vasos de xilema à água Participa de muitos processos fisiológicos Controla a produção de DNA e RNA Está envolvido na resistência a doenças Atua como ativador enzimático	Polifenoloxidase, plastocianina	
Fe	Ativação da enzima nitrogenase Metabolismo de ácidos nucléicos Funções catalíticas e estruturais	Citocromo, ferredoxina, catalase, síntese da porfirina, redução do nitrato, nitrito e sulfito	

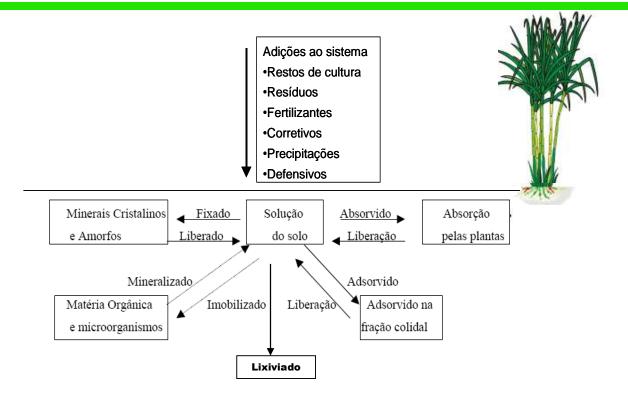
Micronutrientes

Nutriente	Função	Composto	
Mn	Participa em processos fotossintéticos Formação de pontes entre o ATP e enzimas Envolvido em processos de oxi-redução Resistência à doenças	Manganina	
Мо	Fixação do N ₂ , redução do nitrato	Redutase do nitrato, nitrogenase	
Ni	Ativador da Urease	Urease	
Zn	Produção do hormônio de crescimento, sintetase do triptofano, concentra-se nas zonas de crescimento Influência na permeabilidade das membranas Maior resistência à déficit hídrico e luminosidade, diminuindo H ₂ O ₂	auxina, triptofano, triptamina.	

Necessidades Nutricionais

Parte da planta	N	P ₂ O ₅ *	K ₂ O**	Ca	Mg	S	
raite da pianta	kg/100 t						
Colmos	83	25	94	47	33	26	
Folhas	60	18	115	40	16	18	
Total	143	43	209	87	49	44	

^{*}Para transformar valores para P, dividir por 2,29.


Porto do planto	В	Cu	Fe	Mn	Zn
Parte da planta					
Colmos	149	234	1393	1052	369
Folhas	86	105	5525	1420	223
Total	235	339	7318	2470	592

^{**}Para transformar valores para K, dividir por 1,20.

Sistema Solo-Planta

- Nutrientes são constantemente removidos do solo e acumulados nas diversas partes das plantas.
- Nutrientes são absorvidos da solução do solo = solúveis dos insumos ou dos compostos do solo
- Diversas reações no solo aumentam ou diminuem disponibilidade
- Raízes os absorvem e os transportam até a parte aérea.
- Inverso também pode ocorre, isto é, alguns nutrientes e outros compostos que estão na parte aérea se translocam até as raízes.

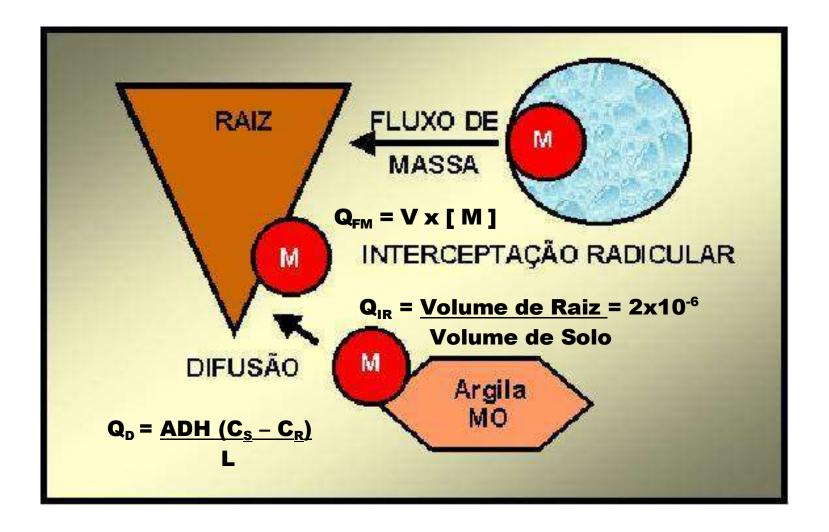
Absorção, Transporte e Redistribuição

Absorção

• entrada do elemento (essencial, benéfico ou tóxico), que está na solução do solo, até o espaço intracelular (da raiz ou de folhas), e depois para qualquer outra parte das células.

Transporte

 movimento do nutriente do órgão de absorção para outra parte do mesmo, ou para outro órgão da planta, como por exemplo, da raiz para a folha, ou desta para a raiz caso a absorção tenha sido foliar


Redistribuição

• movimento do nutriente do local de residência (órgão) para outros como, por exemplo, de uma folha velha para uma nova; de uma folha ou de um órgão de reserva para um fruto.

Contato Íon-Raiz

Contato Íon-Raiz

Interceptação radicular

- √ a raiz, ao se desenvolver, encontra o elemento na solução do solo, na qual ele tem que estar para que possa ser absorvido.
- ✓ elementos tem que estar próximos das raízes ou no caminho de seu crescimento.

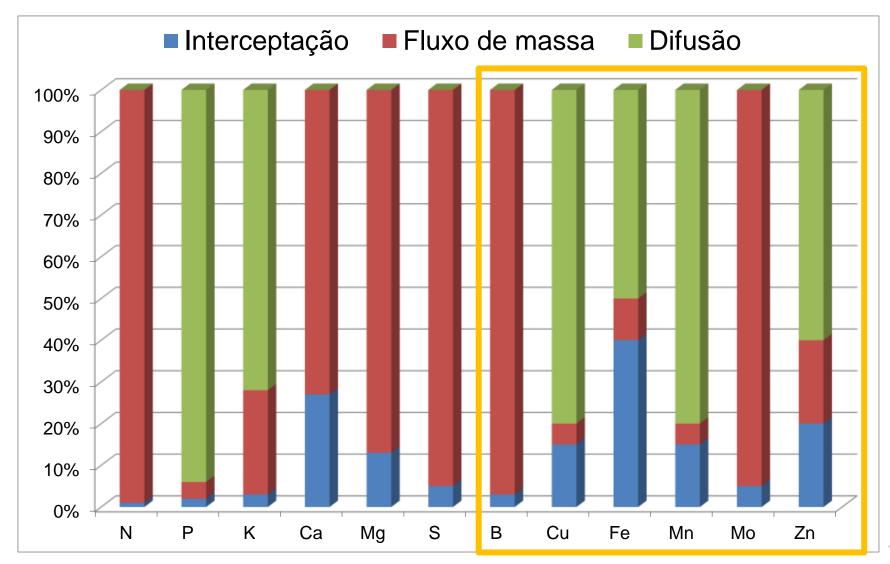
Fluxo de massa

- ✓ consiste no movimento do elemento em uma fase aquosa móvel (= solução do solo), de uma região mais úmida,
 distante da raiz, para outra mais seca, próxima da superfície radicular.
- A quantidade absorvida depende da concentração do elemento na solução do solo e da água contida no solo e absorvida pela cultura.
- ✓ Geralmente elementos com predominância de fluxo de massa possuem maior capacidade de lixiviação

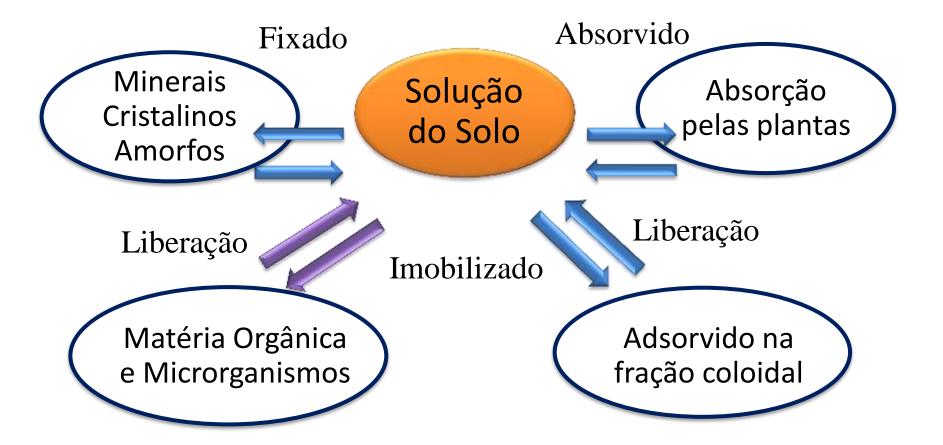
Difusão

- é o movimento espontâneo dos elementos causado pela agitação térmica a favor do gradiente de concentração, isto é, de uma região de maior concentração (solução do solo) para uma de menor concentração (superfície da raiz).
- ✓ Elementos possuem pequeno movimento, baixa lixiviação, mantendo-se concentrados no local de aplicação
- Fixação, complexação por compostos orgânicos, indisponibilidade

Comportamento no Solo


	Pr	ocesso de contato		
Nutriente	Interceptação	Fluxo de massa	Difusão	Aplicação dos produtos
		% do total		
N	1	99	0	Distante, em cobertura, lanço
Р	2	4	94	Próxima das raízes, plantio
K	3	25	72	Próximo das raízes, em cobertura
Ca	27	73	0	Distante, em cobertura, lanço
Mg	13	87	0	Distante, em cobertura, lanço
S	5	95	0	Distante, em cobertura, lanço
В	3	97	0	Distante, em cobertura, lanço
Cu	15	5	80	Próxima das raízes, plantio, foliar
Fe	40	10	50	Próxima das raízes, plantio, foliar
Mn	15	5	80	Próxima das raízes, plantio, foliar
Мо	5	95	0	Distante, em cobertura, lanço
Zn	20	20	60	Próxima das raízes, plantio, foliar

MALAVOLTA et al., 1997.

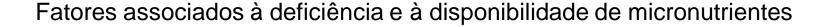

Comportamento no Solo

Equilíbrio dos Micronutrientes no Solo

Formas de Absorção pelas raízes das Plantas

NUTRIENTE	FORMAS
BORO (B)	$H_3 BO_3$
CLORO (Cl)	CI
COBRE (Cu)	Cu^{+2}
FERRO (Fe)	\mathbf{Fe}^{+2}
MANGANÊS (Mn)	\mathbf{Mn}^{+2}
MOLIBDÊNIO (Mo)	MoO_4^{-2}
ZINCO (Zn)	\mathbf{Zn}^{+2}
COBALTO (Co)	\mathbf{Co}^{+2}
SILÍCIO (Si)	H ₄ SiO ₄
NÍQUEL (Ni)	Ni ⁺²

ÂNIONS: B(OH)₃, Cl⁻, MoO₄ ⁻², Si(OH)₄


CÁTIONS: Cu⁺², Fe⁺², Mn⁺², Zn⁺², Co⁺², Ni⁺²

- a) Material de origem do solo
- b) Textura do solo
- c) Aeração do solo
 - → Ferro
 - → Manganês
 - → Cobre
- d) Práticas culturais
 - → Calagem (reação do solo)
 - → Adubação fosfatada
 - → Cana colhida crua
- e) Características genéticas da planta
- f) Desbalanceamento entre nutrientes
- g) Altas produtividades (Lei do mínimo)
- h) Queima de restos culturais (Boro: Cana-de-açúcar)

a) Material de Origem do Solo

BASALTO > GRANITO > CALCÁRIO > XISTO > ARENITO*

Diminuição dos Teores de Micronutrientes no Solo

* Cerrados

Latossolos (Oxissolos)
Argissolos (Alfissolo e Ultissolo)
Neossolos (Entissolo)

- b) Textura do Solo
- De maneira geral;

Solos Arenosos e pobres em M.O.

São Deficientes em Micronutrientes

c) Aeração do Solo

Forte complexação pela M.O.

400 g ha⁻¹ de Cu aumento da produção de 100%

d) Práticas Culturais

Calagem

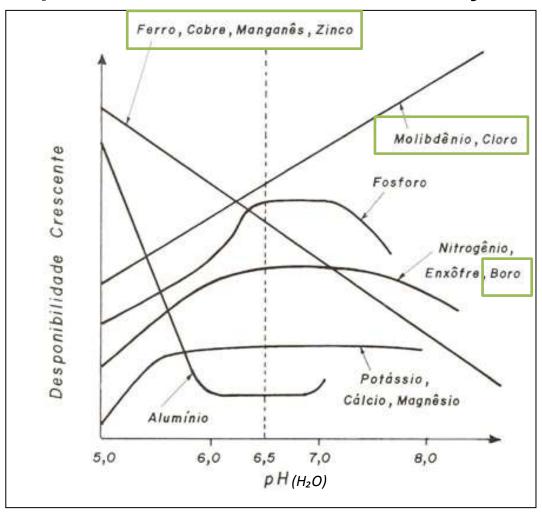
CÁTIONS → Fe⁺², Cu⁺², Mn⁺², Zn⁺², Co⁺²

Diminui Disponibilidade

 $\hat{A}NIONS \rightarrow MoO_4^{-2} e Cl^{-1}$

Aumenta Disponibilidade

CHONPSB +
$$O_2$$
 $\xrightarrow{\text{Micro}}$ H_3BO_3 Heterotrófico


$$H_3BO_3^0 + OH^- \longrightarrow H_2BO_3^-$$

Lixiviação

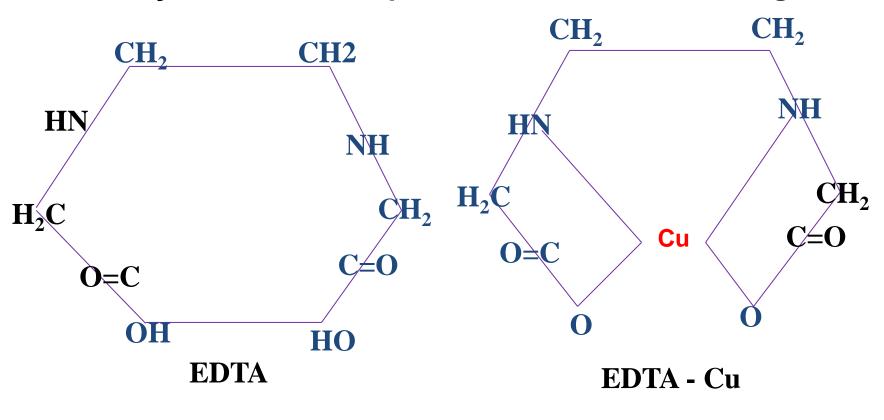
Disponibilidade de nutrientes em função do pH

Fonte: (Malavolta, 1979)

- d) Práticas Culturais
- Adubação Fosfatada

Caso do Zn⁺² → Inibição não competitiva com o H₂PO₄⁻

H₂PO₄ → Provoca precipitação do Zn+2 na raiz = Menor Absorção


H₂PO₄ → Diminui transporte do Zn+2 da raiz para a parte aérea

Práticas Culturais – Cana Colhida Crua

√ Formação de Quelatos pelo aumento da matéria orgânica

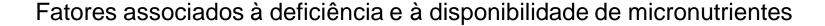
jul-13


 $Cu^{2+} > Zn^{2+} > Mn^{2+} > Fe^{2+}$

Interação entre nutrientes

Adubação	В	Cu	Mn	Мо	Zn 🛑
N	-	-			
P	-	-	•	+	-
K	-				
Ca	+/-	-	-		_
Mg			-		_
S				-	
В	+				-
Cu		+	-	-	-
Fe		-	-		
Mn			+		-
Mo		-		+	
Zn		-	-		+

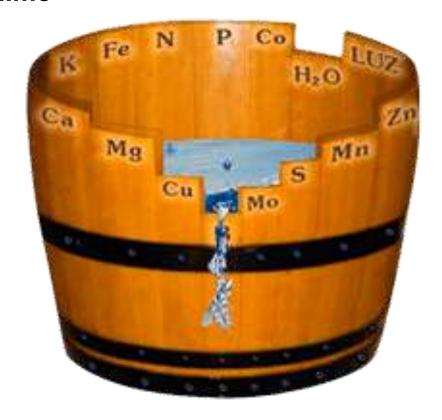
Favarin, 2006


Queima dos restos culturais

Volatilização do Boro

CHONPSB
$$\stackrel{O_2}{\longrightarrow}$$
 H_3BO_3

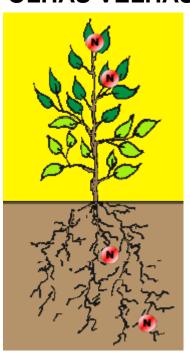
Ex.: Cana-de-açúcar e algodão



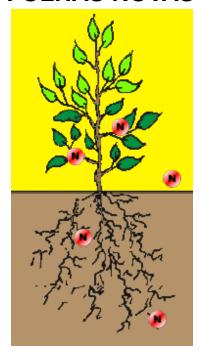
Fatores associados à deficiência e disponibilidade

Lei do Mínimo

Potencial Produtivo da Cana-de-açúcar: +/- 300 t ha⁻¹



Redistribuição


ocorre predominantemente pelo floema, e os elementos podem mostrar mobilidade muito diferente dentro das plantas, generalizando os sintomas de deficiência em folhas com idades diferentes

FOLHAS VELHAS

N, P, K, Mg

FOLHAS NOVAS

Ca - S - B - Cu Fe - Mn - Zn

Avaliação do Estado Nutricional

- Diagnose Visual
- Análise de solo
- Análise Foliar

Diagnose Visual

Sequência de eventos que definem sintomas de deficiência ou de toxidez de elementos

GENERALIZADO

Pragas, doenças, poças...

GRADIENTE

Diferenças em colorações

SIMETRIA

Diferenças em colorações

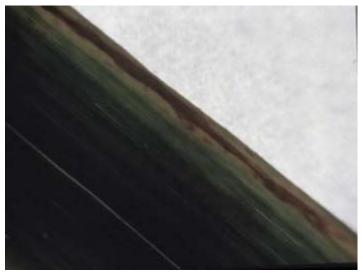
GRADIENTE FOLHAS VELHAS: Macros 1^{ários :} N, P, K e Macros 2^{ário} : Mg

FOLHAS NOVAS: Macros 2^{ário} : Ca e S

Micros: B, Cu, Fe, Mn, Zn, Mo

Boro

- causa uma deformação nas folhas novas, formando um enrugamento
- Folhas do topo retorcidas chegando a formar "nó" entre as folhas, se amarram umas às outras
- Meristema apical pode morrer



Boro - Toxidez

- clorose nas pontas e margens das folhas novas progredindo da base para a ponta da lâmina foliar; por último, a clorose estende-se às folhas mais velhas; tecido clorótico rapidamente torna-se necrótico; pontas das folhas podem ficar severamente queimadas.
- Porém praticamente sem observações na prática,
 devido o as áreas com cana-de-açúcar serem
 altamente deficientes em B

Cobre

- comum em áreas com alta porcentagem de matéria orgânica, e em também solos encharcados,
- manchas verdes ("ilhas") nas folhas; folhas eventualmente descoloridas que se tornam finas como papel e enroladas quando a deficiência é severa;
- colmos e meristemas perdem a turgidez (doença do "topo caído") e adquirem aparência semelhante à touceira amassada; perfilhamento reduzido

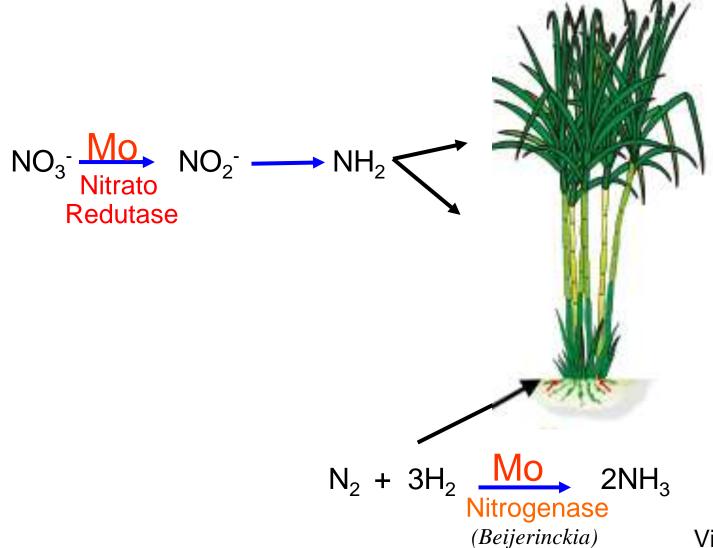
Ferro

- sintomas ocorrem em reboleiras, em solos arenosos e de menor fertilidade, e tende a desaparecer após seis meses de crescimento da planta.
- As folhas afetadas apresentam clorose internerval que se alastra por toda a extensão da lâmina foliar e atinge até nervura central. À medida que planta cresce, aparecem diversos estágios de amarelecimento. Não se observa decréscimo de alongamento do palmito.
- A deficiência de ferro também está associada a excesso de Mn (solos ácidos) por apresentar inibição competitiva com esse elemento, bem como a solos com reação alcalina, pela precipitação do ferro na forma de Fe(OH)₃. MAIS IMPORTANTE EM CANA SOCA

Manganês

- folhas novas, principalmente em solos alcalinos, devido à presença de rochas calcárias, conchas marinhas ou com calagem excessiva.
 - As plantas de cana-de-açúcar deficientes do micronutriente manganês apresentam sintomas visuais como faixas longitudinais bem distintas de tecidos verde e amarelo do meio para as pontas das folhas; em casos severos, a folha perde totalmente a cor verde, tornando-se uniformemente clorótica; nas regiões esbranquiçadas podem aparecer manchas necróticas que coalescendo produzem estrias contínuas de tecido morto. Estrias amarelas ao longo das nervuras e folhas mais finas

Molibdênio


Afeta folhas mais velhas. Os efeitos são comuns em toda a planta. Os caules são curtos e delgados e com crescimento vegetativo retardado. Pequenas lesões cloróticas longitudinais começando aparecer no terço apical da folha.

Nitrogênio e Molibdênio

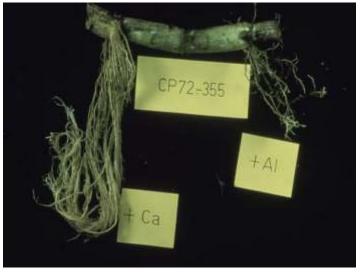
Zinco

- mudas provenientes e plantadas em solos deficientes em zinco, ao germinarem dão origem a plantas com pequeno alongamento do palmito, com tendência das folhas saírem todas do vértice foliar na mesma altura, formando o sintoma de "leque".
- Nos casos graves, as plantas deficientes são visivelmente menores do que aquelas sem deficiência, e as folhas mais velhas apresentam manchas vermelhas na parte inferior e podem mostrar início de clorose internerval em associação com essas manchas vermelhas. Em plantas com mais de seis meses observa-se ligeiro encurtamento nos entrenós, estrias cloróticas na lâmina foliar, porém a nervura central e as margens se mantêm verde. Nos níveis de deficiência "oculta" é frequente o aparecimento de um ataque elevado da doença estria parda, causado pelo fungo Helminthosporium stenospilum. Pode-se observar redução crescimento dos internódios e paralisação do crescimento do topo.

Zinco

Falsa Ferrugem

Deficiência de Zinco

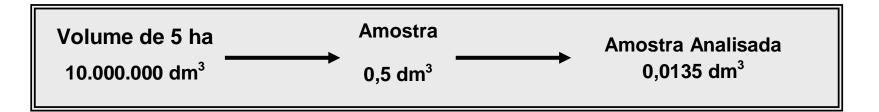


Alumínio - Toxidez

- Formam-se poucas raízes laterais, e as que se formam apresentam-se anormalmente engrossadas;
- danos às raízes lembram os causados por nematoides;
- plantas tornam-se altamente susceptíveis a estresse hídrico e deficiência de P

Diagnose Visual - Limitações

- o uso do método é possível apenas quando os sintomas de deficiência ou toxidez se manifestam visualmente; nesse estágio, em geral, é inevitável a perda de produção;
- o método é qualitativo permite o diagnóstico do nutriente limitante, mas não estabelece doses para sua correção;
- exige bastante experiência do técnico, com a cultura em questão;
- não permite o diagnóstico da "fome ou toxidez oculta";
- não permite o diagnóstico de deficiências múltiplas, devido ao mascaramento dos sintomas típicos;
- confusão de sintomas de origem nutricional e não nutricional.


Análise de solo para interpretação da fertilidade do solo

Análise de solo

- Amostragem = Representatividade
- Análise
- Interpretação

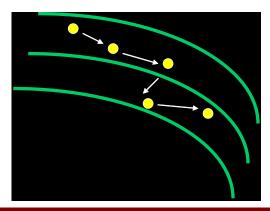
Materiais

Sacos plásticos, baldes, caixas

Época, local e profundidade de amostragem

Cana-planta

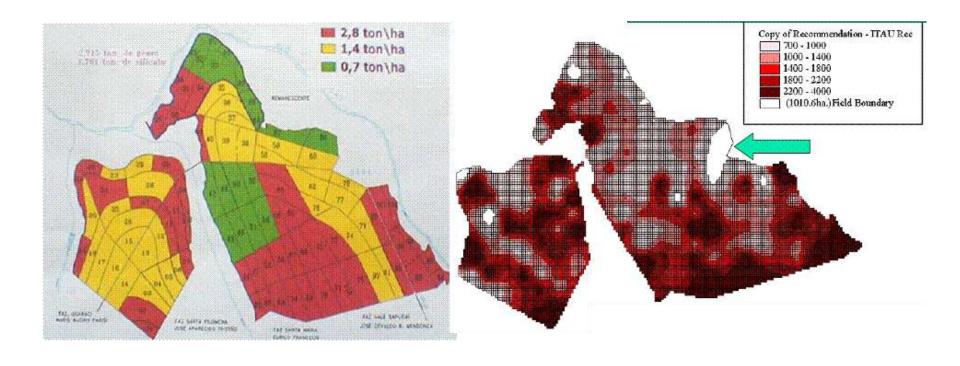
- √ 5 a 20 sub-amostras por talhão ou área homogênea, andando em "ziguezague" e de forma a
 percorrer toda a extensão da área;
- ✓ Georreferenciar a os pontos de amostragem, de preferência antes da amostragem e com base na carta de solos e sistematização dos talhões;
- Realizar amostragens para as profundidades de 0-20 e 20-40 cm (ou 0-25 e 25-50 cm), cerca de 3 a 4 meses antes do plantio, de forma que possibilite a realização das praticas corretivas e até, no mínimo, 2 meses antes do plantio;
- ✓ Para a camada superior (0–20 ou 0-25 cm) proceder à análise de rotina e micronutrientes, enquanto para a camada inferior análise de rotina, Al (alumínio) e S (Enxofre). Pelo menos na primeira amostragem da área, proceder analise física textural para ambas as camadas.



Época, local e profundidade de amostragem

Soqueiras

- ✓ Amostragem para as profundidades de 0-20 e 20-40 cm (ou 0–25 e 25–50 cm), no entanto, posicionando o trato ou a sonda a 25 cm da linha da soqueira;
 - amostras retiradas na linha irão superestimar os teores de P e K, enquanto as na entrelinha superestimarão os teores de Ca e Mg (e portanto a Soma de Bases e V%), e subestimar o P e K.
- Realizar a amostragem nos anos ímpares, após o primeiro, terceiro e quinto cortes, visando aplicação dos corretivos de solo para a soqueira nos anos pares, no corte posterior à amostragem.
- Quando a correção for realizada no mesmo ano da amostragem, proceder à mesma nos anos pares, após o segundo e quanto cortes e antes da reforma.
- ✓ Sugere-se realizar análise de rotina para camada superficial (0–20 ou 0-25 cm), enquanto para a camada inferior (20-40 cm ou 25–50 cm) análise de rotina, S e Al.



Recomendação convencional x precisão

Interpretação

Teor	Produção Relativa	K+ Trocável	P resina
1631	%	mmol _c /dm³	mg/dm³
Muito baixo	0 – 70	0 - 0.7	0 – 6
Baixo	71 – 90	0.8 - 1.5	7 –15
Médio	91 – 100	1,6 - 3,0	16 – 40
Alto	> 100	3,1-6,0	> 40
Muito Alto	> 100	> 6,0	-

Teor	Mg trocável*	S**
	mmol _c /dm³	mg/dm³
Baixo	0 – 4	0 – 4
Médio	5 – 8	5 – 10
Alto	> 8	> 10

*Fonte: Raij et al., 1996. ** Fonte: Vitti, 1989

Interpretação

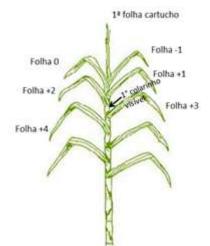
Teor	В	Cu	Fe	Mn	Zn					
	Água Quente		DT	PA						
	mg/dm³									
Baixo	0 - 0,2	0 - 0,2	0 – 4	0 – 1,2	0 - 0.5					
Médio	0,21 - 0,6	0.3 - 0.8	5 – 12	1,3 - 5,0	$0.6 - 1.2 (1.6)^*$					
Alto	> 0,6	> 0,8	> 12	> 5,0	> 1,2 (1,6)*					

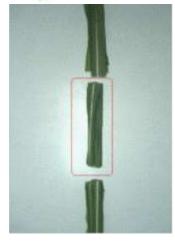
^{*} Utilizar tal valor, caso extrator utilizado para este elemento seja o Mehlich-1.

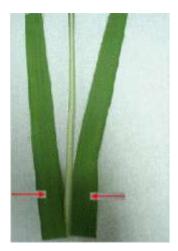
Diagnose Foliar

- Folha órgão da planta que melhor representa o potencial produtivo de uma cultura
- Análise foliar
 - ✓ ferramenta utilizada para determinar teor de nutrientes no tecido vegetal → "analisar solo usando a planta como solução extratora"
 - Auxilia na identificação de possíveis deficiências ou toxidez de nutrientes
 - Uma não substitui a outra
 - ✓ Auxiliar no conhecimento do estado nutricional da cultura
 - Possibilita
 - Interpretar os efeitos da adubação já efetuada
 - Ajustar a adubação da cultura seguinte

Usos da Análise Foliar


- confirmar a diagnose feita por sintomas visuais;
- identificar a fome escondida onde os sintomas não apareçam;
- localizar áreas ou manchas do solo onde ocorram deficiências de nutrientes;
- determinar se os nutrientes aplicados foram absorvidos pelas plantas;
- aprender sobre interações entre vários nutrientes;
- sugerir testes adicionais ou estudos para identificar um problema de produção da cultura.




Cana-de-Açúcar

- Coletar a folha +1, que é a primeira folha com colarinho visível;
- cerca de 30 plantas por área a ser avaliada, buscando o máximo de representatividade;
- Utilizar a parte mediana da folha, desprezando nervura central, dividindo-se a folha em três pa descartando a ponta e a parte com a bainha
- - Para a cana-planta de ano e meio coletar a folha aproximadamente 240 dias após a germinação. Para cana-planta de ano pode-se retirar com 150 dias;
 - Para cana-soca coletar a folha aproximadamente 150 dias após a adubação para canas cortadas de abril a julho, e aproximadamente 120 dias após a adubação para canas cortadas de agosto a novembro.

Interpretação

- Macronutrientes em g/kg; micronutrientes em mg/kg
- Tabela de interpretação nos livros e boletins
 - Como interpretar??
- Efeito da matéria seca (Viu a área??)
- Relação de nutrientes
- Relação solo x planta

Tabelas de Interpretação

N	Р	K	Ca	Mg	S	В	Cu	Fe	Mn	Мо	Zn
g/kg					mg/kg						
18-25	1,5-3,0	10-16	2,0-8,0	1,0-3,0	1,5-3,0	10-30	6-15	40-250	25-250	0,05-0,2	10-50
Raij et al	., 1996										

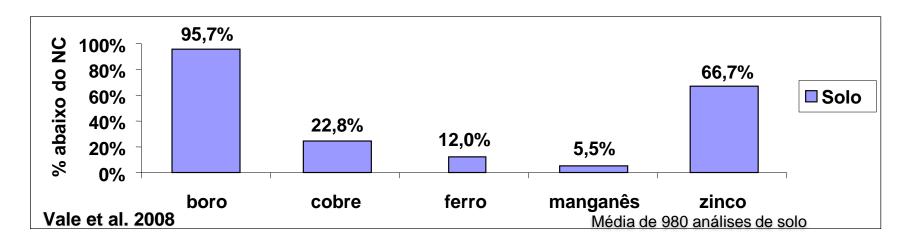
- O que significam os números?
 - Nível crítico teor foliar abaixo do qual as taxas de crescimento, de produção e/ou da qualidade da planta são diminuídas. Em geral, é estabelecido como o teor correspondente a uma produção relativa que pode variar entre 80% e 95 % da produção ótima
- Funciona para cana??
- Erros e adaptações; variedades
- ➤ E as relações??
- E as produtividades??

Interpretação – Nível Crítico

Relações de nutrientes

- Sinal de trânsito
- Comparar épocas semelhantes
- Incluir produtividade

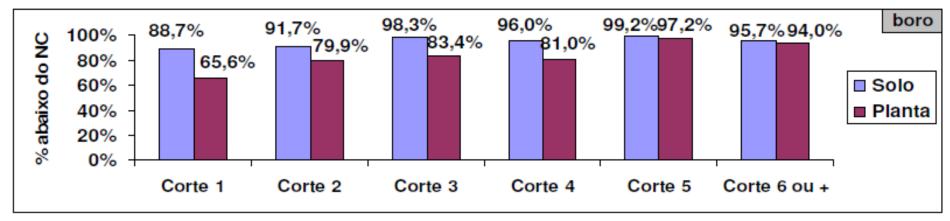
Baixa	ldeal	Alta

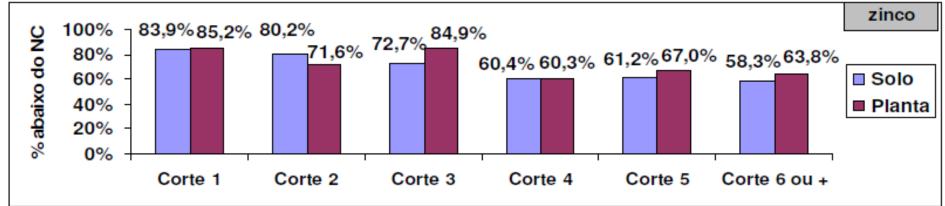

18-25	1,5-3,0	10-16	2,0-8,0	1,0-3,0	1,5-3,0	10-30	6-15	40-250	25-250	10-50
N	Р	K	Ca	Mg	S	В	Cu	Fe	Mn	Zn
g/kg						mg/kg				
16,0	2,3	14,5	4,5	1,8	0,9	7,8	1,0	105,3	95,2	13,1
19,2	2,2	11,5	5,9	1,7	1,0	6,7	1,1	79,9	101,9	12,6
19,3	1,7	9,7	5,6	2,2	1,0	7,1	2,2	166,6	64,8	13,2
21,7	1,8	11,7	5,6	2,7	1,0	5,1	3,9	194,5	69,5	14,4
19,2	1,7	9,2	5,3	2,5	1,2	5,1	3,8	195,7	51,2	12,5
20,9	1,8	8,7	4,9	2,5	1,0	7,1	2,7	256,0	82,3	13,1
17,2	1,8	13,8	3,7	0,9	1,3	6,0	7,4	265,5	110,4	12,3
18,6	2,1	14,8	4,3	1,1	1,4	8,2	7,3	330,2	112,8	12,7
19,9	1,9	12,0	2,2	0,7	0,8	6,8	5,6	167,4	20,8	8,6
16,8	1,7	10,2	2,2	0,8	0,8	64,0	6,4	120,8	15,1	8,2
17,2	2,0	11,5	3,8	1,7	0,9	7,6	10,1	113,0	46,7	12,4
18,8	2,3	12,0	3,7	2,2	1,0	8,8	8,1	115,9	47,2	14,3
17,2	1,7	8,9	6,3	2,4	0,8	8,0	4,0	134,6	116,2	9,5
16,8	1,8	8,2	5,2	3,4	0,7	7,6	5,9	150,7	99,6	12,7
22,0	1,7	8,4	4,6	2,7	0,9	5,5	3,4	118,3	110,0	12,6
19,7	1,8	9,2	5,2	2,2	0,8	3,8	3,8	107,3	86,1	14,6
20,7	1,8	10,7	4,4	1,3	1,1	11,8	18,0	203,3	96,3	15,6
20,2	1,8	13,3	3,8	1,3	1,1	7,0	7,0	122,8	102,3	15,0
21,3	1,9	9,2	4,8	1,8	1,3	5,7	12,2	147,5	36,1	18,3
20,9	2,2	10,5	4,8	1,7	1,3	6,3	6,1	165,9	41,7	19,5

Estado Nutricional dos Canaviais

Deficiência generalizada de B e Zn

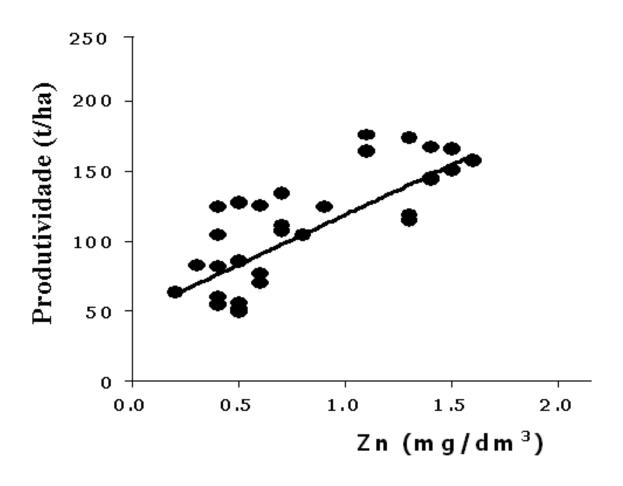
		В	
Teor na Folha	0 - 15	16 - 20	> 20
% do Total	91.0%	7.9%	1.1%


		Zn	
Teor na Folha	0 - 16	17 - 32	> 32
% do Total	62.9%	37.1%	0.0%



Estado Nutricional dos Canaviais

Deficiência generalizada de B e Zn



Zinco x Produtividade

Vale, dados não publicados

DRIS

- Dris = sistema integrado de diagnose e recomendação
 - sistema: conjunto de métodos de coleta de informações, análise e síntese de dados relacionados com a produtividade vegetal
 - integrado: métodos devem convergir num único diagnóstico/recomendação
 - diagnose e recomendação: diagnose direcionada na tomada de decisão (recomendação de insumos ou técnicas agrícolas)

DRIS

RESULTADO DE ANÁLISE FOLIAR

Produtor: Usina da Pedra

Propriedade: Da Pedra

Talhão: 13

Referência: Convencional 1

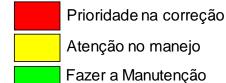
Data: 16-jul-13 Cu

ad bai

Cultura: Cana-de-açúcar Corte: 3

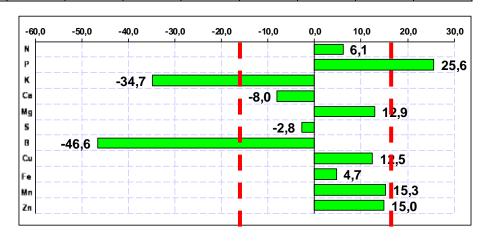
Área (ha): 13

Variedade: RB5156


ANALISE FOLIAR

	N	Р	K	Ca	Mg	S	В	Cu	Fe	Mn	Zn	
		g/kg						mg/kg				
Faixa Adequada	18-25	1,5-3,0	13-20	3,5-5	1,5-3	1,5-2	10-20	6-15	80-250	80-250	18-25	
Teor na Planta	20,2	2,1	9,5	4,3	1,7	1,5	5,1	7,5	115,0	135,0	24,5	

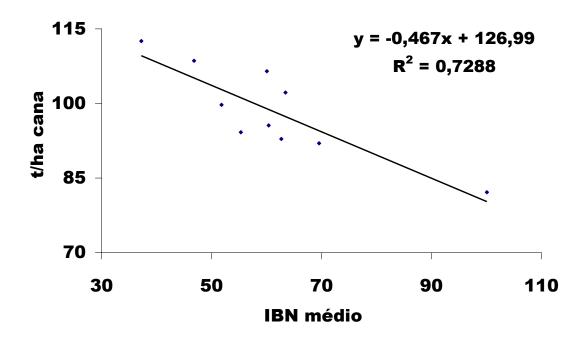
CALCULO DRIS CANA-DE-AÇUCAR


Índice DRIS Interpretação

IN	ΙP	IK	I Ca	l Mg	IS	ΙB	I Cu	l Fe	I Mn	l Zn
6,1	25,6	-34,7	-8,0	12,9	-2,8	-46,6	12,5	4,7	15,3	15,0
ADEQUADO	EXCESSO	PROVÁVEL DEFICIÊNCIA	ADEQUADO	ADEQUADO	ADEQUADO	DEFICIENTE	ADEQUADO	ADEQUADO	ADEQUADO	ADEQUADO

IBN Médic

IBN Médio 16,8


Fabio Vale 2013

Fabio Vale

DRIS - Cana

Nutrição Mineral da Cana-de-Açúcar

- Base para aumento de produtividade
- Complexa, envolve diversas etapas
- Baseada em históricos e análises
- Influenciada por manejos, equipamentos e fontes de nutrientes
- Aprimorar as práticas de correção e adubação

Obrigado

Fabio Vale

Adubai Consultoria

11-99301-9464

19-9502-2553

fabio.vale@adubai.com.br

